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The purpose of the paper is the development of a new method of solving dynamic problems 
of elasticity theory by introducing kinetic stress functions [l to 4. Eqnations which the 
kinetic stress functions satisfy are presented here, and the form of the general solution of 
these equations is found. 

Let as consider the square of a line element in some Riemann space, which we shall 
designate as generating: 

ds2 = [i + 8(P,& (Xj, t)] dakdzk - Ca [I + ecpd (zj,t)] dta (k, j = 1, 2, 3) (1) 
where e is an arbitrary small parameterm 9 a constant to be determined, cp,,drl, t) = ~~(x $ 

x2, x3, t) the kinetic stress functions. It is seen from (1) that for e= 0 the Riemann space 

degenerates into a Euclidean space. We assume that this Euclidean space contains the con- 
tinuum being studied. Functional derivatives of the components of the fundamental metric 
tensor of the generating Riemann space define the kinetic stress tensor as c + 0. 

We assume that the energy mome turn. tensor is proportional to the functional derivative of 
the fundamental geometric invariant 9 4. Let us set 

I’“” = e-r (Rp” - ‘j2 g” R) (2) 

where TW’ is the energy-momentum tensor; the remaining notation is standard. 

As a result of passing to the limit as s + 0 we obtain a general solution of the eqnations 
of motion of a continuum element from (2) [2J: 

1 
Qi* - pV{ta == .) 

-[ 

‘r (vi i (P4) 
+ 

aa (q, + 94) I a% 
_-- 

a.r';axk adad @ ap (‘Pk + ‘Fj) 

1 a2 (Cpi f cpr) 
skj - pz’kvj = - 2 a~azJ( 

(3) 

(4) 

i w~kfa 

P’ .i -= -2cn axi at 
(5) 

Here ulk is the stress tenior, v the velocity of a continuum element, ‘p the density. The 
indicen 1, k, j generate a cyclic permutation of the numbers 1, 2, 3. We henceforth neglect 
nonlinear terms in the components of the three-dimensional portion of the kinetic stress ten- 
sor in Expressions (3) to (6). The generality of (3) to (6) results, in particular, from the pos- 
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sibility of introducing an arbitrary orthogonal curvilinear coordinate system in the Eucli- 

dean space. 
In the case of a compressible medium the density is approximately representable by the 

relationship 

p - p. (1 - div u), p. = const (7) 

In combination with (7). the equality (5) leads to such values of the linear portion of the 

comoonents of the velocity vector: 

U-3) 

The fundamental substitutions (3) to (6) are independent of the equations of state, i.e., 
they are applicable to a study of the dynamics of elastic and plastic solids, as well as to 
a viscous fluid. Now, let us consider elastodynamics as a particular case. In this case the 
equations of state agree with the generalized Hooke’s law. 

After elimination of nonlinear terms and obvious transformations, we find the following 
eauations from Hooke’s law and relationships (3), (4), (8): 

Here the U, are undetermined functions of integration. Eqs. (6) and (7) reduce to the re- 

lationship 
1 

p0(1-divu)===~f& (11) 

Let us recall that 
1 

div u := x (611 i- czz -t o33) (12) 

Taking account of (12) and (3), we obtain from (11) 
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“pocx 
81 + 3h + “p ((I, -= a’1 + 02 + al*) (13) 

Therefore, the functions ok&‘, r) and cp,(nj, t) should satisfy the system of Eqs. (9). 

(10) and (13). These equations contain an undetermined constant c2 and the undetermined 

functions of integration. To determine c 2we form (10) by a different method. We find from 

03) 
(14) 

Here i)y,/dx’ are integration functions. Substituting (14) into the generalized Hooke’s law, 

and equating the normal stresses to (3). we again find 

(16) 

Here the PI are arbitrary integration functions. -- Eqs. (10) and (15) should be identical, as 
definitions of the same physical process. Comparing these equations we find 

c’1 = p I p. (17) 

Hence, the expressions in the square brackets in the right-hand sides of (10) and (15) 
will be equal. As we shall show below, the generality of the obtained equations is not dis- 
turbed if particular expressions of the arbitrary integration functions are selected so as to 
eliminate them from (10) and (15). We then find 
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(18) 

For the value found for c2 the system (9) reduces to Eq. of the form 

Ql+ Q, + Qs = 2% - @ + '10 P) bkmxkxm (19) 

It is easy to note that (13), defining ‘pi, is a consequence of (18) with (17) and (19). 

Moreover, setting 

Qi = Ye ?- ~1~ (2’)’ $ (I [(xk)r + @)‘I + btz (20) 

and determining the coefficients 4 and b from the conditions of eliminating the homogeneous 
field of static stresses, we finally obtain 

1 
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(22) 

Here the t$ are new kinetic stress functions. It follows from (20) and (18) that the kine- 
tic stress functions vy, are the solutions of a system of three differential Eqs. 

@Y, 
A,=~+~+~~ (23) 

Thus the solution of elastodynamics problems reduces to solving the system (23) in con- 
junction with relationships (21) and (22), f rom which the boundary and initial conditions for 
the functions v, result. The generality of the obtained solution is confirmed by the fact that 
we obtain the homogeneous Lam6 equations by differentiating (23) and substituting the re- 
lationships (22). 

Conversely, we again find (23) from the La&. equations and (22) having integrated with 
respect to x1 (i = 1, 2, 3). The undetermined integration functions manifested here do not 
affect the displacement and stress field. We omit the elementary proof of this, almost ob- 
vious, fact. 

The system (23) differs from the Lam; equations in that the right-hand sides of these 
equations are identical, which permits expression of two desired functions in terms of the 
third 

WI = y, + F,, W, = ‘I’, + F2 (24) 
The functions F, and F2 are solutions of Eq. 

CsFi = 0 (i = 1, 2) 

After substituting (24) into the third Eq. of (23) we find 
(25) 

Hence, there results 

CZlJlY3 7x0 (27) 

Eq. (27) agrees with one of the equations mentioned by A.I. Lur’e [5] in finding the gen- 
eral solution of the linear elastodynamics equations. 

As is seen from (25), (27) and (22), th e solution of elastodynamics problems for displace- 
ments given on the body surface admits of an autonomous determination of the functions \Y, 
These functions are connected by boundary conditions in other cases. 

In conclusion, let us recall that the formulation of the type (3) to (6), permits extension 
of the expounded method to other cases of continuum dynamics, as well as to nonlinear prob- 
lems. In this case, in place of the stresses a,,, the kinetic stresses should be considered 
without neglecting the nonlinear terms in (3) to (6). 
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A special class of integral equations of the first kind with irregular difference kernel of 
complex structure dependent on a nondimensional parameter h is considered. The asympto- 
tic solution of this inte 
in powers of k-1 and In 

al aquation is constructed for large values of x as a double series 
f. 

The obtained results are utilized to study axisymmetric problems of the interaction bet- 
ween a stiff belt and the surface of an infinite elastic cylinder, as well as the interaction 
between a stiff bushing and the surface of an infinite cylindrical cavity in elastic space. 

Finally, under the customsry assumptions of Hertz theory, the problem of interaction bet- 
ween an elastic belt and infinite elastic cylinder is examined on the basis of the solution 
of the first two problems. 

I. Investfgstion of the structure of the solution of the integral 
equation and construction of the asymptotic solution for large vaf- 
ues of the parameter A. Let us consider an integral Eq. of the form 

. 

~(~)=lnlyl~~(y)i_IyIf;2(yf+~a(y) (1.21 
The functions F, fyi will be continuous witb all their derivatives for all values - 2/X,< 

NY < = (% - :)/ii< 2/x and will behave as O(y 2) for y + 0. 
Hence it follows that the function F(ylE H ?(- 1, 11, 0 <Q < 1 whereH a 

notes the space of functions whose a-th deriva trl 
ponent Q for 1x14 /3. 

vc satisfies the Bb’lder con 
a f- p, fil de- 

ition with ex- 

We shall moreover assume that f(x) e Ho?- 1, 11, d > 0, p 31. 
Following [I], 1 t 

kind 
e us represent (I.11 ES an equivalent integral eqnation of the second 
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